99 research outputs found

    Coronavirus: Scientific insights and societal aspects

    Get PDF
    In December 2019, the first case of infection with a new virus COVID-19 (SARS-CoV-2), named coronavirus, was reported in the city of Wuhan, China. At that time, almost nobody paid any attention to it. The new pathogen, however, fast proved to be extremely infectious and dangerous, resulting in about 3–5% mortality. Over the few months that followed, coronavirus has spread over entire world. At the end of March, the total number of infections is fast approaching the psychological threshold of one million, resulting so far in tens of thousands of deaths. Due to the high number of lives already lost and the virus high potential for further spread, and due to its huge overall impact on the economies and societies, it is widely admitted that coronavirus poses the biggest challenge to the humanity after the second World war. The COVID-19 epidemic is provoking numerous questions at all levels. It also shows that modern society is extremely vulnerable and unprepared to such events. A wide scientific and public discussion becomes urgent. Some possible directions of this discussion are suggested in this article

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow

    Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure.</p> <p>Results and Discussion</p> <p>ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems</p> <p>Conclusion</p> <p>A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.</p

    An iterative identification procedure for dynamic modeling of biochemical networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model's response. These parameters can be identified by fitting the model to experimental data. However, this fit can only be accomplished when identifiability can be guaranteed.</p> <p>Results</p> <p>We propose a novel iterative identification procedure for detecting and dealing with the lack of identifiability. The procedure involves the following steps: 1) performing a structural identifiability analysis to detect identifiable parameters; 2) globally ranking the parameters to assist in the selection of the most relevant parameters; 3) calibrating the model using global optimization methods; 4) conducting a practical identifiability analysis consisting of two (<it>a priori </it>and <it>a posteriori</it>) phases aimed at evaluating the quality of given experimental designs and of the parameter estimates, respectively and 5) optimal experimental design so as to compute the scheme of experiments that maximizes the quality and quantity of information for fitting the model.</p> <p>Conclusions</p> <p>The presented procedure was used to iteratively identify a mathematical model that describes the NF-<it>κ</it>B regulatory module involving several unknown parameters. We demonstrated the lack of identifiability of the model under typical experimental conditions and computed optimal dynamic experiments that largely improved identifiability properties.</p

    Analysis and verification of the HMGB1 signaling pathway

    Get PDF
    Background\ud Recent studies have found that overexpression of the High-mobility group box-1 (HMGB1) protein, in conjunction with its receptors for advanced glycation end products (RAGEs) and toll-like receptors (TLRs), is associated with proliferation of various cancer types, including that of the breast and pancreatic.\ud \ud Results\ud We have developed a rule-based model of crosstalk between the HMGB1 signaling pathway and other key cancer signaling pathways. The model has been simulated using both ordinary differential equations (ODEs) and discrete stochastic simulation. We have applied an automated verification technique, Statistical Model Checking, to validate interesting temporal properties of our model.\ud \ud Conclusions\ud Our simulations show that, if HMGB1 is overexpressed, then the oncoproteins CyclinD/E, which regulate cell proliferation, are overexpressed, while tumor suppressor proteins that regulate cell apoptosis (programmed cell death), such as p53, are repressed. Discrete, stochastic simulations show that p53 and MDM2 oscillations continue even after 10 hours, as observed by experiments. This property is not exhibited by the deterministic ODE simulation, for the chosen parameters. Moreover, the models also predict that mutations of RAS, ARF and P21 in the context of HMGB1 signaling can influence the cancer cell's fate - apoptosis or survival - through the crosstalk of different pathways

    Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler Signaling Networks

    Get PDF
    Two theories have emerged for the role that stochasticity plays in biological responses: first, that it degrades biological responses, so the performance of biological signaling machinery could be improved by increasing molecular copy numbers of key proteins; second, that it enhances biological performance, by enabling diversification of population-level responses. Using T cell biology as an example, we demonstrate that these roles for stochastic responses are not sufficient to understand experimental observations of stochastic response in complex biological systems that utilize environmental and genetic diversity to make cooperative responses. We propose a new role for stochastic responses in biology: they enable populations to make complex responses with simpler biochemical signaling machinery than would be required in the absence of stochasticity. Thus, the evolution of stochastic responses may be linked to the evolvability of different signaling machineries.National Institutes of Health (U.S.). Pioneer Awar

    Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states

    Get PDF
    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation

    On systems and control approaches to therapeutic gain

    Get PDF
    BACKGROUND: Mathematical models of cancer relevant processes are being developed at an increasing rate. Conceptual frameworks are needed to support new treatment designs based on such models. METHODS: A modern control perspective is used to formulate two therapeutic gain strategies. RESULTS: Two conceptually distinct therapeutic gain strategies are provided. The first is direct in that its goal is to kill cancer cells more so than normal cells, the second is indirect in that its goal is to achieve implicit therapeutic gains by transferring states of cancer cells of non-curable cases to a target state defined by the cancer cells of curable cases. The direct strategy requires models that connect anti-cancer agents to an endpoint that is modulated by the cause of the cancer and that correlates with cell death. It is an abstraction of a strategy for treating mismatch repair (MMR) deficient cancers with iodinated uridine (IUdR); IU-DNA correlates with radiation induced cell killing and MMR modulates the relationship between IUdR and IU-DNA because loss of MMR decreases the removal of IU from the DNA. The second strategy is indirect. It assumes that non-curable patient outcomes will improve if the states of their malignant cells are first transferred toward a state that is similar to that of a curable patient. This strategy is difficult to employ because it requires a model that relates drugs to determinants of differences in patient survival times. It is an abstraction of a strategy for treating BCR-ABL pro-B cell childhood leukemia patients using curable cases as the guides. CONCLUSION: Cancer therapeutic gain problem formulations define the purpose, and thus the scope, of cancer process modeling. Their abstractions facilitate considerations of alternative treatment strategies and support syntheses of learning experiences across different cancers
    corecore